INTRODUCTION

A WIDE VARIETY OF DIETARY phytochemicals have been suggested to block the initiation of cancer or to suppress its development (182). These agents exert their effects by interacting with numerous cellular proteins that, in turn, affect multiple steps in the pathways leading to tumorigenesis. Many of these molecular alterations involve the kinase networks, such as mitogen-activated protein kinases, phosphatidylinositol 3-kinase (PI-3K), and protein kinase, that maintain homeostasis in cells. These kinase pathways converge to activate downstream transcription factors such as nuclear factor-κB (NF-κB) and activator protein 1. In fact, curcumin (turmeric), resveratrol, silymarin, caffeic acid phenethyl ester, flavopiridol, emodin, green tea polyphenols, piperine, oleandrin, ursolic acid, and betulinic acid. Recent research has suggested that these plant polyphenols might be used to sensitize tumor cells to chemotherapeutic agents and radiation therapy by inhibiting pathways that lead to treatment resistance. These agents have also been found to be protective from therapy-associated toxicities. How these polyphenols protect normal cells and sensitize tumor cells to treatment is discussed in this review. Antioxid. Redox Signal. 7, 1630–1647.
release and subsequent caspase activation, which, in turn, leads to apoptosis. Furthermore, TNF-associated factor signaling has been shown to be directly linked to the electron transport mechanism in mitochondria and subsequent to ROI production (37). A review placed ROI as a common upstream component in TNF-induced apoptosis as well as in caspase, c-Jun N-terminal kinase, mitogen-activated protein kinase, NF-κB, and activator protein 1 activation (55). Through NF-κB activation, ROI has been shown to mediate prosurvival signaling as well. Therefore, ROI mediates both pro-apoptotic and anti-apoptotic signaling, but the precise mechanisms that lead to these polar outcomes are not yet clear.

Chemotherapy and radiotherapy strongly induce TNF signaling and in doing so use the production of ROI to induce both apoptosis and resistance (Fig. 2). Thought to exert their effects in large part through their antioxidant properties, plant polyphenols may also use ROI in signaling (147).

NF-κB activation

The ubiquitously expressed transcription factor NF-κB is involved in a wide spectrum of cellular responses, including cell cycle control, apoptosis, and stress adaptation. Among the many diseases linked to aberrant NF-κB activation, can-

Table 1. Polyphenols that May Modulate Chemotherapy and Radiotherapy

<table>
<thead>
<tr>
<th>Polyphenol</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genistein</td>
<td></td>
</tr>
<tr>
<td>Chemosensitization</td>
<td></td>
</tr>
<tr>
<td>Enhanced apoptosis induced by docetaxel and cisplatin in pancreatic cancer cells</td>
<td>103</td>
</tr>
<tr>
<td>Enhanced apoptosis induced by doxorubicin, etoposide, or cisplatin in lung cancer cells</td>
<td>95</td>
</tr>
<tr>
<td>Was synergistic with cyclophosphamide in a lung cancer mouse model</td>
<td>205</td>
</tr>
<tr>
<td>Enhanced cisplatin-induced apoptosis in five human melanoma cell lines</td>
<td>188</td>
</tr>
<tr>
<td>Potentiated β-lapachone-induced apoptosis of PC3 and LNCaP prostate cancer cells</td>
<td>92</td>
</tr>
<tr>
<td>Potentiated the effect of dexamethasone on cell cycle progression in liver and colon cancer cells</td>
<td>139</td>
</tr>
<tr>
<td>Enhanced the effects of cisplatin and, to a lesser extent, of vincristine in medulloblastoma cells</td>
<td>84</td>
</tr>
<tr>
<td>Enhanced the effects of tiazofurin in human leukemia cells</td>
<td>100</td>
</tr>
<tr>
<td>Enhanced the effects of tiazofurin in human ovarian carcinoma cells</td>
<td>99</td>
</tr>
<tr>
<td>Was synergistic with quercetin in ovarian carcinoma cells</td>
<td>169</td>
</tr>
<tr>
<td>Radiosensitization</td>
<td></td>
</tr>
<tr>
<td>Potentiated the effect of radiation on prostate carcinoma cells</td>
<td>65</td>
</tr>
<tr>
<td>Improved the efficacy of chemoradiotherapy in a murine lung tumor model</td>
<td>111</td>
</tr>
<tr>
<td>Enhanced radiosensitivity in human esophageal cancer cell lines</td>
<td>4</td>
</tr>
<tr>
<td>Enhanced γ-irradiation-induced apoptosis and cell cycle arrest in K562 leukemia cells</td>
<td>138</td>
</tr>
<tr>
<td>Resveratrol</td>
<td></td>
</tr>
<tr>
<td>Chemosensitization</td>
<td></td>
</tr>
<tr>
<td>Enhanced paclitaxel-induced apoptosis of lung cancer cells</td>
<td>91</td>
</tr>
<tr>
<td>Reduced paclitaxel-induced apoptosis in human neuroblastoma SH-SY5Y cells</td>
<td>130</td>
</tr>
<tr>
<td>Reduced TNF-induced apoptosis in human leukemia cells</td>
<td>109</td>
</tr>
<tr>
<td>Reduced H₂O₂-induced apoptosis in human neuronal PC12 cells</td>
<td>73</td>
</tr>
<tr>
<td>Inhibited H₂O₂-, vincristine-, daunorubicin-, and C2-induced apoptosis in human leukemia cells</td>
<td>2</td>
</tr>
<tr>
<td>Sensitized multiple myeloma cells and non-Hodgkin’s lymphoma cells to paclitaxel-induced apoptosis</td>
<td>25</td>
</tr>
<tr>
<td>Reduced H₂O₂-induced apoptosis in leukemia cells by inhibiting leukotriene B4 and prostaglandin E2</td>
<td>108</td>
</tr>
<tr>
<td>Radiosensitization</td>
<td></td>
</tr>
<tr>
<td>Enhanced γ-radiation-induced apoptosis and cell cycle arrest of Hela and SiHa cells</td>
<td>216</td>
</tr>
<tr>
<td>Curcumin</td>
<td></td>
</tr>
<tr>
<td>Chemosensitization</td>
<td></td>
</tr>
<tr>
<td>Sensitized multiple myeloma cells to vincristine and melphalan</td>
<td>25</td>
</tr>
<tr>
<td>Potentiated the cytotoxic effects of doxorubicin, 5-FU, and paclitaxel in prostate cancer cells</td>
<td>67</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Polyphenol</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiosensitization</td>
<td></td>
</tr>
<tr>
<td>Sensitized PC3 prostate cancer cells to radiation through suppression of TNF production</td>
<td>41</td>
</tr>
<tr>
<td>Protective effects</td>
<td></td>
</tr>
<tr>
<td>Reduced lung toxicity in rats treated with whole-body radiation</td>
<td>191</td>
</tr>
<tr>
<td>Reduced radiation-induced genotoxicity in mice treated with whole-body radiation</td>
<td>192</td>
</tr>
<tr>
<td>Decreased acute toxicity from whole-body radiation in rats</td>
<td>71</td>
</tr>
<tr>
<td>Protected rats from doxorubicin-induced nephrotoxicity</td>
<td>200</td>
</tr>
<tr>
<td>Protected rats from doxorubicin-induced cardiotoxicity</td>
<td>199</td>
</tr>
<tr>
<td>Reduced mucosal injury from trinitrobenzene sulfonic acid-induced colitis in mice</td>
<td>196</td>
</tr>
<tr>
<td>Inhibited camptothecin-, mechlorethamine-, and doxorubicin-induced apoptosis of breast cancer cells</td>
<td>176</td>
</tr>
<tr>
<td>Green tea polyphenols</td>
<td></td>
</tr>
<tr>
<td>Chemosensitization</td>
<td></td>
</tr>
<tr>
<td>Enhanced antitumor activities of other anthracyclines, cisplatin, and irinotecan in ovarian sarcoma-bearing mice</td>
<td>180</td>
</tr>
<tr>
<td>Enhanced antitumor effect of doxorubicin in mice with ascites carcinoma</td>
<td>158</td>
</tr>
<tr>
<td>Enhanced inhibitory effects of doxorubicin against Ehrlich ascites carcinoma in mice (green tea)</td>
<td>159</td>
</tr>
<tr>
<td>Was synergistic with doxorubicin in mice with M5076 ovarian sarcoma</td>
<td>179</td>
</tr>
<tr>
<td>Reversed MDR and increased doxorubicin concentration in mice with P388 leukemia</td>
<td>160</td>
</tr>
<tr>
<td>Increased pirarubicin concentration in M5076 ovarian sarcoma cells</td>
<td>181</td>
</tr>
<tr>
<td>Increased antitumor activity of idarubicin and reduced its toxicity in mice with P388 leukemia</td>
<td>161</td>
</tr>
<tr>
<td>Emodin</td>
<td></td>
</tr>
<tr>
<td>Chemosensitization</td>
<td></td>
</tr>
<tr>
<td>Enhanced arsenic trioxide-induced apoptosis in HeLa cells</td>
<td>208</td>
</tr>
<tr>
<td>Potentiated effects of cis-platinol, doxorubicin, and 5-FU in Merkel cell carcinoma cells (aloe-emodin)</td>
<td>52</td>
</tr>
<tr>
<td>Enhanced effects of paclitaxel on Her-2/neu-overexpressing breast cancer cells</td>
<td>213</td>
</tr>
<tr>
<td>Enhanced cytotoxic effects of cisplatin, doxorubicin, and etoposide on Her-2/neu-overexpressing non-small cell lung cancer cells</td>
<td>210</td>
</tr>
<tr>
<td>CAPE</td>
<td></td>
</tr>
<tr>
<td>Protective effects</td>
<td></td>
</tr>
<tr>
<td>Protected rats from doxorubicin-induced cardiotoxicity</td>
<td>51</td>
</tr>
<tr>
<td>Protected rats from cisplatin-induced nephrotoxicity</td>
<td>135</td>
</tr>
<tr>
<td>Protected rats from bleomycin-induced lung fibrosis</td>
<td>136</td>
</tr>
<tr>
<td>Protected rats from ischemia-reperfusion kidney injury</td>
<td>61</td>
</tr>
<tr>
<td>Protected rats from radiation-induced inflammatory changes</td>
<td>106</td>
</tr>
<tr>
<td>Flavopiridol</td>
<td></td>
</tr>
<tr>
<td>Chemosensitization</td>
<td></td>
</tr>
<tr>
<td>Potentiated effects of mitomycin c in breast and gastric cancer cells</td>
<td>165</td>
</tr>
<tr>
<td>Was synergistic with paclitaxel, cytarabine, topotecan, doxorubicin, etoposide, and cisplatin in non-small cell lung cancer cells</td>
<td>29</td>
</tr>
<tr>
<td>Enhanced doxorubicin-induced apoptosis in retinoblastoma protein-deficient sarcoma cells</td>
<td>101</td>
</tr>
<tr>
<td>Augmented CPT-11-induced apoptosis in Hct116 colon cancer cells</td>
<td>123</td>
</tr>
<tr>
<td>Increased sensitization to gemcitabine in gastrointestinal cancer cells</td>
<td>77</td>
</tr>
<tr>
<td>Radiosensitization</td>
<td></td>
</tr>
<tr>
<td>Potentiated γ-radiation-induced apoptosis in colon and gastric cancer cells</td>
<td>78</td>
</tr>
<tr>
<td>Enhanced radiosensitivity of ovarian carcinoma cells</td>
<td>150</td>
</tr>
<tr>
<td>Silymarin</td>
<td></td>
</tr>
<tr>
<td>Chemosensitization</td>
<td></td>
</tr>
<tr>
<td>Potentiated doxorubicin cytotoxicity in P-glycoprotein-positive breast cancer cells (silymarin)</td>
<td>214</td>
</tr>
<tr>
<td>Enhanced doxorubicin-induced growth inhibition in human prostate cancer cells (silymarin)</td>
<td>195</td>
</tr>
<tr>
<td>Was synergistic with cisplatin and doxorubicin in breast cancer and ovarian carcinoma cells (silybin)</td>
<td>164</td>
</tr>
<tr>
<td>Protective effects</td>
<td></td>
</tr>
<tr>
<td>Protected rat cardiomyocytes from anthracycline-induced toxicity</td>
<td>42</td>
</tr>
<tr>
<td>May have protected rat heart membrane from doxorubicin-induced damage</td>
<td>148</td>
</tr>
<tr>
<td>Ginger</td>
<td></td>
</tr>
<tr>
<td>Protective effects</td>
<td></td>
</tr>
<tr>
<td>Protected rats and dogs from cisplatin-induced nausea</td>
<td>167, 168</td>
</tr>
<tr>
<td>Piperine</td>
<td></td>
</tr>
<tr>
<td>Effects on bioavailability</td>
<td></td>
</tr>
<tr>
<td>Increased bioavailability of propranolol and theophylline in humans</td>
<td>15</td>
</tr>
<tr>
<td>Enhanced bioavailability of aflatoxin B1 in rat tissues</td>
<td>6</td>
</tr>
<tr>
<td>Enhanced bioavailability of curcumin in rats and humans</td>
<td>173</td>
</tr>
</tbody>
</table>
Resistance to treatment has been the major focus because of NF-κB's role as a central regulator of the inflammatory response, its regulation of genes involved in cellular survival (Bcl-2, Bcl-xL, c and x forms of inhibitor of apoptosis protein [IAP], and superoxide dismutase) and tumor progression (intercellular adhesion molecule 1, vascular cell adhesion molecule 1, endothelial leukocyte adhesion molecule 1, cyclooxygenase-2 [COX-2], inducible nitric oxide synthase [iNOS], and matrix metalloproteinase [MMP-9]). Furthermore, its constitutive activity has been frequently elevated in many types of tumors, including leukemia, lymphoma, prostate cancer, breast cancer, colon cancer, melanoma, and head and neck cancers (54, 152). Ursolic acid and betulinic acid have been shown to induce NF-κB activation led resistance to conventional cancer treatment resistance (18, 20, 137, 202). In a recent study of four tumor cell lines, each treated with different chemotherapy regimens (doxorubicin, 5-fluorouracil [5-FU], cisplatin, and paclitaxel), cell survival correlated with the level of NF-κB activity induced by the drugs (43). In another study, NF-κB-binding activity decreased in breast cancer cells from paclitaxel-induced and Herceptin), suggesting a role for NF-κB in the therapeutic efficacy of this antibody combined with chemotherapy for patients with Her-2/neu-positive breast cancer (144). Others studies have shown tumor regression due to tumor sensitization to CPT-11 (irinotecan), a topoisomerase I inhibitor, in mouse xenograft models that overexpress inhibitory subunit of NF-κB (IκBα) (45, 203). Additional reports using adenovirus-mediated gene transfection of IκBα demonstrated the potentiation of chemotherapeutic efficacy in both in vitro and in vivo models of gastrointestinal malignancies (46, 203), human glioma cells (204), and pancreatic cancer cells (11). Compared with cells without the super-repressor, fibrosarcoma cells expressing the IκBα super-repressor were more sensitive to radiation-induced apoptosis (17), and glioblastoma cell lines (A172, M054) expressing the super-repressor were more susceptible to radiotherapy (206). Protease inhibitors are less specific but are a more clinically useful way to examine the effects of NF-κB inhibition. In a preclinical study, the use of protease inhibitors increased radiation-induced apoptosis of lymphoma cells (93).

COX-2 expression

COX-2, an enzyme expressed largely in response to inflammatory disorders and cancer, mediates prostaglandin production and is currently under clinical investigation as a target for anticancer therapy (120, 125). Its presence has been associated with more aggressive tumor phenotypes and worse outcome for patients with breast cancer, colon cancer, head and neck cancers, lung cancer, and pancreatic cancer. Accumulating evidence suggest that COX-2 is involved in multiple aspects of carcinogenesis, including maintenance of tumor growth, facilitation of metastatic spread, and resistance to various therapies (89, 116). As a result, selective inhibitors of COX-2, such as SC-236 and celecoxib, have been used in vitro and in vivo to test whether its inhibition may sensitize tumor cells to chemotherapy and radiotherapy. For example, SC-236 increased tumor radioresponse in murine tumor models and in a human glioma xenograft in nude mice (87, 118, 142), and celecoxib enhanced the response of A431 tumor models and in a human glioma xenograft in nude mice to radiation and docetaxel chemotherapy, radiotherapy, or both (188). The mechanisms that account for these findings and others are not yet clear but may involve the elimination of prostaglandins as protective molecules in response to chemotherapy and radiotherapy (117).

Bcl-2 expression

Bcl-2 is a member of the Bcl-2 family of proteins that regulates both pro-apoptotic and anti-apoptotic signaling in cells. Bcl-2 itself is an anti-apoptotic protein that is inappropriately overexpressed in a number of solid and hematopoietic tumors, and exerts its influence by enhancing cellular survival (81), which contributes to resistance to conventional treatments, including chemotherapy and radiotherapy (36). Furthermore, several investigations have shown that inhibiting Bcl-2 sensitizes tumor cells to chemotherapy and radiotherapy. For example, transfection with the gene PTEN, which down-regulates Bcl-2, potentiated the effects of radiotherapy in several types of prostate cancer cells (156). An-
other study, using Bcl-2 antisense oligonucleotide, demonstrated increased apoptosis and enhanced chemotherapeutic efficacy in undifferentiated thyroid carcinomas (86). These results and others (21, 62) have highlighted Bcl-2 as a potential target for chemosensitization and radiosensitization.

Survivin expression

Survivin is a member of the mammalian IAP family and functions primarily to inhibit the apoptosis pathway by blocking caspase 9 activation (162, 170). Both in vitro and in vivo experiments have demonstrated its cancer-inducing properties (16) and its overexpression in several malignant tissues and its absence in most normal tissues (7, 8). Survivin has been shown to be involved in angiogenesis and to be necessary for the anti-apoptotic effect of vascular endothelial growth factor (114, 132, 193, 215). Furthermore, high levels of survivin have been associated with a high rate of tumor recurrence, low overall patient survival, and high tumor resistance to chemotherapy and radiotherapy (7). Cell sensitization to therapies has been demonstrated in several studies: Inhibition of survivin with a ribozyme or dominant-negative molecule sensitized melanoma and pancreatic cancer cells to radiation (12, 141); survivin inhibition sensitized breast cancer cells to paclitaxel and doxorubicin (133, 201); and survivin inhibition plus radiotherapy resulted in significantly decreased survival of lung cancer cells (107).

Multidrug resistance (MDR) protein expression

MDR proteins and MDR-associated proteins are two sub-families of the ATP-binding cassette family proteins that regulate the P-glycoproteins that remove drugs from cells at the cost of ATP hydrolysis (49, 166). The relationship between MDR protein expression and chemoresistance is fairly well established (96, 185). For example, in vitro and in vivo investigations have suggested the involvement of MDR proteins in multiple mechanisms that lead to chemoresistance in prostate cancer (197). This result was consistent with that from a study that used an NF-κB inhibitor to down-regulate the expression of MDR proteins, thereby leading to increased apoptosis in prostate cancer cells (53). The association between MDR protein expression and radioresistance is less clear. For example, cancer cells that expressed the MDR gene were no more resistant to radiotherapy than their non-MDR counterparts (57).

AKT expression

The protein kinase B/Akt pathway is a downstream effector of PI-3K and has been described as a mediator of anti-apoptotic signaling in cancer cells. Akt has been shown to affect cell cycle progression and foster tumorigenesis when overexpressed (209). This overexpression may contribute to chemoresistance and radioresistance. The ectopic expression of constitutively active Akt1 resulted in enhanced resistance of non-small cell lung cancer cells to a panel of chemotherapeutic agents (68). In breast cancer cells, inhibition of the PI-3K/Akt pathway led to enhanced paclitaxel, doxorubicin, and 5-FU cytotoxicity (75), and dominant-negative expression vectors sensitized the cells to the induction of apoptosis by paclitaxel, doxorubicin, 5-FU, etoposide, and camptothecin (88). However, in pancreatic cancer cells, the PI-3K/Akt pathway did not seem to be involved in gemcitabine resistance (11). Accumulating evidence has suggested that the PI-3K/Akt pathway may also be a major contributor to radioresistance (209). One report indicated that activated Akt in bile duct cancer cells was associated with radioresistance, as evidenced by the enhanced radiosensitization via Akt inhibition (189). This report and another (112) indicated the PI-3K/Akt pathway as a target for tumor sensitization to radiotherapy.

Signal transducer and activator of transcription (STAT)3 expression

STAT3 is a ubiquitously expressed member of the STAT family of transcription factors that is activated by tyrosine phosphorylation via upstream receptors that bind to growth factors such as epidermal growth factor (EGF) and platelet-derived growth factor and cytokines such as interleukin-6 (IL-6) (5, 97, 98). STAT3 has diverse biologic functions, including cell growth regulation, apoptosis regulation, and cell differentiation. STAT3 has also been shown to be constitutively active in a number of human cancers and to be necessary for tumor cell growth (32). Moreover, STAT3 may mediate chemoresistance, and its inhibition may sensitize cells to apoptosis. For example, STAT3 inhibition contributed to the decreased survival of multiple myeloma cells (26), and it may have sensitized pancreatic cancer cells to apoptosis (59). Blockade of STAT3 using various techniques sensitized estrogen receptor-negative breast cancer cells to chemotherapy-induced apoptosis (153). Finally, STAT3 inhibition with a STAT3 antisense oligonucleotide enhanced radiation-induced apoptosis in prostate cancer cells (36).

EGF receptor (EGFR) expression

EGFR is a transmembrane glycoprotein with intrinsic tyrosine kinase activity. On binding with EGF or transforming growth factor-beta, EGFR regulates a signaling cascade that, in turn, regulates cell growth and proliferation. EGFR overexpression has been linked to aggressive tumor phenotypes, poor patient prognosis, and poor tumor response to therapies (113). For example, the magnitude of EGFR expression correlated with increased tumor chemoresistance and radioresistance in a variety of in vivo tumors, including murine carcinoma, squamous cell carcinoma, ovarian adenocarcinoma, hepatocarcinoma, and adenosquamous carcinoma (3, 119, 126). Use of the anti-EGFR antibody C225 greatly enhanced the response of A431 human tumor xenografts in nude mice to docetaxel, radiation, or both (119, 126). Other investigators also reported the increased sensitization of tumor cells to radiotherapy through EGFR inhibition (28, 69, 70). Mechanisms that account for this effect by EGFR inhibitors are becoming clearer with time, and likely involve sensitization to treatment-induced apoptosis, inhibition of treatment-induced repair mechanisms, and inhibition of tumor angiogenesis (120).
SENSITIZATION BY PLANT POLYPHENOLS

BACKGROUND ON SELECTED POLYPHENOLS

Genistein is a soy-derived isoflavone that acts as a tyrosine kinase inhibitor and has a structure with an affinity for the estrogen receptor and androgen-mediated pathways (33). Therefore, it is not surprising that it has received considerable attention as a chemopreventive agent in breast, prostate, and other cancers (163). In fact, epidemiologic studies have linked the lower incidences of breast and prostate cancers in Asian populations than in non-Asian populations to significant differences in diet, including a higher concentration of soy isoflavones such as genistein. Genistein is thought to inhibit the growth of cancer cells by modulating genes related to cell cycle control and apoptosis and is a potent inhibitor of angiogenesis and metastasis. In vitro and in vivo investigations have shown that this mechanism may be mediated through NF-κB inhibition (128). Furthermore, genistein combined with chemotherapy and radiotherapy may enhance the efficacy of these therapies.

Resveratrol (trans-3,5,4′-trihydroxystilbene) was first isolated in 1940 as a constituent of the roots of white hellebore (Veratrum grandiflorum O. Loes) but has since been found in various plants, including grapes, berries, and peanuts. Research in recent years has focused on the anticancer properties of resveratrol, as suggested by its ability to suppress the proliferation of lymphoid and myeloid cancers, multiple myeloma, breast cancer, prostate cancer, colon cancer, pancreatic cancer, melanoma, head and neck squamous cell carcinoma, ovarian carcinoma, and cervical carcinoma (14, 35, 50).

Curcumin, a diferuloylmethane derived from turmeric (Curcuma longa), has been the subject of intense study as a chemopreventive agent and as a complement to chemotherapy and radiotherapy. Notable findings in recent years have included its ability to suppress proliferation in a variety of tumor cell types; down-regulate NF-κB target genes such as COX-2, iNOS, MMP-9, urokinase-type plasminogen activator, and cyclin D1; inhibit the expression of growth factor receptors, including EGFR and human EGFR 2; and inhibit several protein kinases involved in the signaling pathways leading to tumorigenesis (1). Moreover, curcumin inhibits NF-κB activation induced by various inflammatory stimuli (54, 124, 151), the IkB kinase (IKK) activation needed for NF-κB activation (17, 31, 122), and NF-κB-induced osteoclastogenesis (27). An epidemiologic study suggested that low incidences of gastrointestinal malignancies in India may be attributable to the presence of natural additives, including curcumin, in the Indian diet (121).

Used as a medicinal agent in Asia for more than 4,000 years, green tea is derived from the leaves of Camellia sinensis and is an efficacious chemopreventive agent and modulator of chemotherapy (140, 182). Several investigations, including a phase I clinical trial (146), have demonstrated a decreased relative risk of many cancers, including lung, colorectal, pancreatic, and stomach cancers with the consumption of green tea. Growing evidence from animal studies has also suggested the chemopreventive potential of green tea (140). Two components of green tea, EGCG and γ-glutamylethylamide (theanine), have been the particular focus of ongoing research. Several other plant polyphenols (e.g., emodin, caffeic acid phenethyl ester [CAPE], flavonoids, silymarin, ginger, and piperine) are currently under investigation and are discussed below.

SENSITIZATION OF TUMOR CELLS BY POLYPHENOLS TO CHEMOTHERAPEUTIC AGENTS

Green tea polyphenols

Mounting evidence has suggested that the amino acid theanine, a major component of green tea, plus chemotherapy has a synergistic effect for a variety of cancers. An investigation of the combined effects of theanine and glutamate transporter inhibitors on the antitumor activity of doxorubicin in M5076 ovarian sarcoma-bearing mice revealed that, compared to the doxorubicin-alone group, theanine significantly enhanced the inhibitory effect of doxorubicin on tumor growth and increased the drug’s concentration in the tumors (188). Oral administration of theanine or green tea similarly enhanced the antitumor activity of doxorubicin. Theanine plus doxorubicin also suppressed the hepatic metastasis of ovarian sarcoma. An increase in doxorubicin concentration was not observed in normal tissues such as the liver and heart. The investigators described novel mechanisms of enhancement of antitumor efficacy of doxorubicin via the inhibition of glutamate transporters by theanine. Moreover, theanine enhanced the antitumor activities of other anthracyclines, cisplatin, and irinotecan (188).

Another study showed that, compared with doxorubicin alone, theanine plus doxorubicin enhanced the antitumor effect over twofold in mice with Ehrlich ascites carcinoma (158). Furthermore, theanine caused an almost threefold increase in the concentration of doxorubicin within the tumor, which correlated with the increased efficacy of the drug combination and decreased tumor weight (188). Consistent with these results, theanine and doxorubicin acted synergistically in mice with M5076 ovarian sarcoma, enhancing tumor concentration of chemotherapy, inhibiting tumor growth, and decreasing hepatic metastasis (159, 178, 179). Theanine was also effective in reversing MDR in mice with P388 leukemia by increasing the doxorubicin concentration within the tumor and decreasing tumor weight (160). In both the ovarian sarcoma and leukemia cells, theanine attacked the same transport process for doxorubicin, elevated the doxorubicin concentration, and increased the doxorubicin-induced antitumor activity. Other studies have also demonstrated the inhibition of MDR-associated proteins by green tea components (44, 66).

Like theanine, the green tea components—caffeine, EGCG, and flavonoids—inhibit doxorubicin efflux from Ehrlich ascites carcinoma cells. Thus, EGCG and flavonoids may enhance doxorubicin-induced antitumor activity and increase doxorubicin concentration in tumors by inhibiting the efflux. These components in green tea probably exhibit low toxicity, and green tea plus chemotherapy probably has few adverse effects. Similar synergistic effects have been noted...
for theanine plus pirarubicin (181, 194), idarubicin (161),
cisplatin (155, 217), and CPT-11 (175). However, one report
found no association between intake of green tea and risk of

Studies have demonstrated the potent chemopreventive
effect of EGCG in several types of cancer cells. In the prostate

cancer cell lines LNCaP and DU-145, EGCG inhibited NF-
κB activation, thereby leading to increased apoptosis and de-
creased expression of the prometastatic genes encoding for
MMP-2 and MMP-9 (60, 63, 198). In human epidermoid
carcinoma A431 cells, EGCG activated caspases, which led to
increased apoptosis and inhibition of NF-κB (60). In YCU-
H891 head and neck cancer cells and MDA-MB-231 breast
carcinoma cell lines, EGCG inhibited both constitutive NF-
κB activation and EGFR activation and strongly inhibited
vascular endothelial growth factor production (110). Also in
breast cancer cells, EGCG inhibited basal Her-2/neu receptor
tyrosine phosphorylation, leading to subsequent inhibition of
PI-3K, Akt, and NF-κB activation (145). In the lung cancer
cell line PC-9, EGCG inhibited NF-κB-inducing kinase, an
upstream kinase leading to IκB kinase and NF-κB activation
(134). Finally, in EGFR- and 12-O-tetradecanoylphorbol 13-
acetate-stimulated mouse JB6 epidermal cells, EGCG inhib-
ited ultraviolet B-induced NF-κB-mediated transcription
(131). Taken together, these results suggested that the chemo-
preventive properties of EGCG may derive from the modula-
tion and inhibition of a variety of signaling pathways that
lead to NF-κB activation and tumorigenesis.

Genistein

Several reports have highlighted the enhanced efficacy of
chemotherapy when it is combined with several plant
polyphenols. Genistein has been shown to potentiate the ef-
effects of chemotherapy for numerous tumor types. In the pan-
creatic cancer cell line, treatment with genistein before doc-
etaxel or cisplatin administration enhanced tumor cell death
compared with treatment with either chemotherapeutic drug
alone. This effect may have been mediated by the inhibition of
NF-κB by genistein, causing increased apoptosis (188). In
EGFR-expressing lung cancer cells, genistein combined with
cisplatin, doxorubicin, or etoposide enhanced the antiprolif-
erative effects of these drugs and induced programmed cell
differentiation (95). This result was consistent with that from another
report using a lung cancer mouse model to show the synergis-
etic effect of genistein and cyclophosphamide (205). In an-
other study using five human melanoma cell lines, genistein
plus cisplatin enhanced apoptosis in all cell lines versus ei-
ther treatment alone; furthermore, genistein significantly re-
duced levels of the anti-apoptotic proteins Bcl-2 and Bcl-xL and
increased levels of the pro-apoptotic protein Apaf-1 (188). In prostate cancer cell lines PC3 and LNCaP, genistein
plus β-lapachone resulted in more potent cell killing than ei-
ther treatment alone did (92). In liver and colon cancer cell
lines, genistein plus dexamethasone resulted in enhanced ex-
pression of p21
delta/CIP1, an inhibitor of cyclin-dependent ki-
nase 2, thereby halting cell cycle progression (139). In medu-
loblastoma cells, genistein potentiated the effects of cisplatin
and, to a lesser extent, those of vincristine (84). In human leu-
kemia cells (188) and ovarian carcinoma cells (188), genis-
tein plus tiazofurin resulted in greater cells growth inhibition
and increased cell differentiation compared to either treat-
ment alone. Finally, genistein and quercetin acted synergisti-
cally in ovarian carcinoma cells (169).

The chemopreventive outcomes of genistein in several
tumor types may be achieved by targeting an NF-κB-dependent
pathway. For example, in studies using MDA-MB-231
breast cancer cells and PC3 prostate cancer cells, genistein
inhibited cell growth and induced apoptosis via the down-
regulation of Akt and NF-κB pathways (58, 102). In T-cell
lymphoma cell lines, genistein increased pro-apoptotic cas-
pase 3 activity and reduced activity of the NF-κB-mediated
anti-apoptotic factors A1 and clAP-1 (19). These observa-
tions were consistent with those from an in vivo investigation
of pancreatic cancer, in which genistein significantly im-
proved patient survival, almost completely inhibited meta-
stasy, and increased apoptosis by activating caspase 3 (34).
Other studies have shown that genistein inhibited NF-κB-
binding activity in human hepatocarcinoma cells (184), pro-
tate cancer cells LNCaP and PC3 (47), and human alveolar
epithelial carcinoma cells (38).

Resveratrol

Resveratrol has been shown to potentiate the apoptotic ef-
fects of cytokines, chemotherapeutic agents, and γ-radiation.
One study assessed the in vitro biologic activity of resveratrol
in lung cancer cell lines by examining its effect on apoptosis
induced by paclitaxel (91). Simultaneous exposure to resver-

trol and paclitaxel did not result in significant synergy, but
pretreatment with resveratrol (10 μM for 3 days) significantly
enhanced the subsequent antiproliferative effect of paclitaxel.
The study also examined the effects of resveratrol and pacli-
taxel on p21waf1, p27kip1, E-cadherin, EGFR, and Bcl-2 levels
in non-small cell lung cancer EBC-1 cells. Resveratrol (10
μM for 3 days) administered before paclitaxel increased
p21waf1 expression approximately fourfold. These results sug-
gested that lung cancer cells exposed to resveratrol have a
lowered threshold for killing by paclitaxel and, thus, that
resveratrol may be a compromising alternative therapy for
lung cancer (91).

Another study found that resveratrol modified the expres-
sion of apoptotic regulatory proteins and sensitized non-
Hodgkin’s lymphoma and multiple myeloma cell lines to pacli-
taxel-induced apoptosis (74). Resveratrol down-regulated
the expression of anti-apoptotic proteins Bcl-xL and myeloid
cell differentiation factor 1 and up-regulated the pro-apoptotic
proteins Bax and Apaf-1. Furthermore, inhibition of Bcl-xL
(an NF-κB target gene) by resveratrol was critical for
chemosensitization because functional impairment of Bcl-xL
mimicked resveratrol-mediated sensitization to paclitaxel-
induced apoptosis (91). In contrast, another study found that
trans-resveratrol reduced cellular death in SH-SY5Y neuro-
blastoma cells exposed to paclitaxel by inhibiting paclitaxel-
induced activation of caspase 7 and the degradation of
poly(ADP-ribose) polymerase (91).

The contrasting effects of resveratrol may be dose-depen-
dent, whereby it potentiates the effects of cytokines and che-
motherapeutic agents at higher concentrations and inhibits
their effects at lower concentrations. At relatively low con-
centrations, resveratrol abrogated TNF-induced cytotoxicity and caspase activation (109) and attenuated H_{2}O_{2}-induced cytotoxicity, DNA fragmentation, and intracellular accumulation of ROI (73). Furthermore, a recent report showed that low concentrations of resveratrol (4-8 μM) inhibited caspase activation, DNA fragmentation, and translocation of cytochrome c induced by H_{2}O_{2}, vincristine, daunorubicin, etc. (2). The effects of resveratrol at these levels were attributed to increased intracellular superoxide concentration and reduced drug-induced acidification. These results suggested that the protective or inhibitory effects of resveratrol at low concentrations are secondary to its antioxidant mechanism.

Curcumin

Several studies have shown that curcumin sensitizes cells to chemotherapy. One report showed that curcumin down-regulated NF-kB and sensitized multiple myeloma cells to vincristine and melphalan. Furthermore, the NF-kB target genes Bcl-2, Bcl-xL, cyclin D1, and IL-6 were down-regulated by curcumin, leading to the suppression of proliferation and arrest of cells at the G_{1}/S phase of the cell cycle (25). In another study, curcumin potentiated the cytotoxic effects of doxorubicin, 5-FU, and paclitaxel in prostate cancer cells, and suppressed both the constitutive and TNF-induced activation of NF-kB (67). Likewise, doxorubicin-induced NF-kB activation was attenuated by curcumin (43). Curcumin has also been shown to modulate the activity of the MDR genes, thereby suppressing drug efflux by P-glycoprotein and leading to chemosensitization (10, 105). These results, when taken together, support the further investigation of curcumin plus chemotherapeutic drugs as a synergistic therapy.

Emodin

Emodin may sensitize cancer cells to chemotherapy. For example, it sensitized HeLa cells to arsenic trioxide via generation of ROI and ROI-mediated inhibition of two major prosurvival transcription factors, NF-kB and activator protein 1 (208), and it effected apoptosis in human promyelo-leukemic HL-60 cells by inducing caspase 3, but independently of ROI (40). In a study using several chemotherapeutic agents including cis-platinol (abiplastin), doxorubicin (adri-ablastin), 5-FU, and tyrosine kinase inhibitor STI 571, aloe-emodin potentiated their inhibitory effects on Merkel cell carcinoma cells (52). In cholangiocarcinoma cells and epithelial stem-like cells, emodin and celecoxib synergistically suppressed cell growth and increased activation of caspases 9 and 3; this mechanism was suggested to work through Akt inhibition (94). In Her-2/neu-overexpressing breast cancer cells, emodin inhibited Her2/neu tyrosine kinase activity, suppressed cell growth, induced cell differentiation, and sensitized cells to paclitaxel chemotherapy (211, 212, 213). In Her-2/neu-overexpressing non-small cell lung cancer cells, emodin suppressed cell proliferation, reduced Her-2/neu tyrosine kinase activity, and enhanced the inhibitory effects of cisplatin, doxorubicin, and etoposide on cell proliferation (210). However, one study showed no chemosensitizing effect of emodin in ovarian cancer cells (64).

Flavopiridol

Flavopiridol potentiates the effects of chemotherapy in several types of cancer. For example, flavopiridol potentiated the cytotoxic effects of mitomycin c by promoting drug-induced apoptosis in breast and gastric cancer cells; this effect was dependent on the order of treatment (165). An investigation using non-small cell lung cancer cells revealed that the sequence of administration was important to the sensitization effects of flavopiridol: Flavopiridol enhanced the cytotoxic effects of paclitaxel, cytarabine, topotecan, doxorubicin, and etoposide only when administered after treatment; only flavopiridol plus cisplatin showed sequence-independent synergy (29). Flavopiridol sensitized retinoblastoma protein-deficient sarcoma cells to doxorubicin-induced cell killing (101) and colon cancer xenografts cells to CPT-11 through activation of caspase 3 and cleavage of anti-apoptotic factors (123). Furthermore, flavopiridol enhanced the induction of apoptosis by gemcitabine in human pancreatic, gastric, and colon cancer cell lines (77). The mechanism accounting for the sensitization effects of flavopiridol may involve its inhibition of NF-kB. Indeed, in one study, flavopiridol inhibited NF-kB, which in turn down-regulated cyclin D1, COX-2, and MMP-9 (187). Similarly, flavopiridol inhibited NF-kB-dependent gene transcription and enhanced TNF- and TNF-related apoptosis-inducing ligand-induced cytotoxicity (85). Yet another study showed that flavopiridol enhanced tumor cell apoptosis by inhibiting survivin phosphorylation (201).

Silymarin

Silymarin may potentiate the effects of chemotherapy on cancer. In MDR breast cancer cells, it potentiated doxorubicin cytotoxicity by inhibiting P-glycoprotein ATPase activity, which is responsible for cellular efflux of cytotoxic substances (214). This observation was consistent with a recent report demonstrating that silymarin and resveratrol significantly increased breast cancer-resistant protein substrates in breast cancer-resistant protein-overexpressing cells (44). Another study demonstrated the synergistic effects of silybin plus cisplatin or doxorubicin in breast cancer and ovarian cancer cells (164). Likewise, silibinin strongly synergized the growth-inhibitory effect of doxorubicin in prostate cancer cells and was associated with cell cycle arrest (195).

SENSITIZATION OF TUMOR CELLS BY POLYPHENOLS TO RADIATION

Genistein

Genistein and radiation have been suggested to be synergistic. In prostate cancer cells, genistein significantly inhibited DNA synthesis, cell growth, and colony formation and potentiated the effect of low doses of photon (200–300 cGy) or neutron (100–150 cGy) radiation, the latter effect being more pronounced with the combined treatment than with genistein or radiation alone (65). In an in vivo murine lung cancer model, chemoradiotherapy plus genistein resulted in significantly lower tumor volume, microvessel density, and vascular endothelial growth factor level than did
chemoradiotherapy alone (111). In human esophageal cancer cell lines, genistein greatly enhanced radiosensitivity by suppressing radiation-induced activation of the survival signals Akt and p42/p44 extracellular signal-regulated protein kinase (4). Finally, in a Bcr/abl-positive leukemic cell line, genistein increased radiation-induced apoptosis and promoted arrest of the G2 phase cell cycle (138).

Resveratrol

Resveratrol may induce radiosensitization. Reports have suggested that increased activation of NF-κB and up-regulation of NF-κB-mediated expression of COX-2 and of 5-lipoxygenase (5-LOX) contribute significantly to radioreistance (39, 190) and that inhibition of NF-κB, COX-2, and 5-LOX induces radiosensitization (30, 149, 157). Resveratrol has been shown to down-regulate NF-κB (109), COX-2 (177), and 5-LOX (108). Using clonogenic cell survival assays, one study showed that pretreatment with resveratrol enhanced HeLa and SiHa cell killing and induced an early S phase cell-cycle checkpoint arrest after the cells were exposed to ionizing radiation (216).

Curcumin

Resistance to radiation was suggested in one study to be caused by increased expression of NF-κB-induced prosurvival genes, such as Bcl-2 and Bcl-xL, in response to radiation (124). In that investigation, curcumin plus radiation inhibited NF-κB activation in DU-145 and LNCaP prostate cancer cells and resulted in down-regulation of Bcl-2, and curcumin alone enhanced caspase activation and cytochrome c release in both cell types, leading to increased apoptosis. Curcumin has also been shown to sensitize PC3 prostate cancer cells to radiation (41).

Green tea

A few studies have suggested that EGCG could modulate radiotherapy. A study using human embryonic endothelial cells found that ionizing radiation induced expression of angiogenesis genes membrane type 1-MMP and caveolin-1 and that this expression was abrogated by pretreatment with EGCG (9). These results demonstrated that radiotherapy, which is better known for its ability to promote cancer cell death, may increase the expression of NF-κB-mediated target genes that may be inhibited by EGCG (48, 143). Another investigation showed that EGCG suppressed oncogenic transformation of mouse embryonic fibroblast C3H10T1/2 cells (90).

Flavopiridol

Growing evidence suggests that flavopiridol may sensitize tumor cells to radiation. In one study, flavopiridol significantly enhanced the induction of apoptosis by radiation in colon and gastric cancer cells; this effect was optimal when flavopiridol followed the radiation treatment (78). Other investigations showed that flavopiridol strongly enhanced the response of ovarian carcinoma cells to radiation and suggested that the underlying mechanisms included inhibition of sublethal DNA damage repair and cell cycle redistribution; in addition, transcriptional regulation by flavopiridol may have been involved (78).

POLYPHENOLS PROTECTS NORMAL CELLS/ORGANS FROM CHEMO/RADIOThERAPY

Curcumin

Several reports have also identified curcumin as a potent protector against radiation. Oral administration of curcumin (200 µmol/kg) significantly reduced lung toxicity in rats treated with whole-body radiation (10 Gy in five fractions) (191), and curcumin reduced liver and serum lipid peroxidation in rats treated with radiation. In addition, reduced radiation-induced genotoxicity (chromosomal damage) was observed in mice treated with oral curcumin (400 mmol/kg) plus whole-body radiation (1.5–3.0 Gy) (192). In another study, dietary curcumin significantly decreased acute toxicity from whole-body radiation in rats and decreased the incidence of mammary and pituitary tumors at 1-year follow-up (71). These findings, when taken together, demonstrated that curcumin is a promising radioprotective agent and warrants further investigation.

Curcumin has been shown to protect cells from doxorubicin-induced renal injury (200), cardiotoxicity (199), and gastrointestinal injury (196). These protective effects could be secondary to the suppression of oxidative stress and inflammatory damage (80). One study revealed that curcumin inhibited camptothecin-, mechlorethamine-, and doxorubicin-induced apoptosis in tissue cultures of MCF-7, MDA-MB-231, and BT-474 human breast cancer cells by up to 70%; inhibition occurred after relatively brief 3-h exposures to curcumin, or at curcumin concentrations of 1 µM (176). In an *in vivo* model of human breast cancer, dietary supplementation with curcumin significantly inhibited cyclophosphamide-induced tumor regression, and it was concluded that dietary curcumin could inhibit chemotherapy-induced apoptosis by inhibiting reactive oxygen species generation and blocking of c-Jun N-terminal kinase function. However, because NF-κB is a major regulator of the transcriptional response to cellular oxidative stress (54), it is tempting to believe that the suppression of NF-κB-induced gene expression is responsible, at least in part, for these therapeutic effects.

CAPE

Several reports have indicated that CAPE has strong chemoprotective properties. Our investigation demonstrated that pretreatment with CAPE significantly attenuated doxorubicin-induced cardiotoxicity in rats and suggested that these effects may have been due to its antioxidant properties (51). The free-oxygen-radical scavenging properties of CAPE in rats account for its protective effects on renal tissue treated with cisplatin (135) and against lung toxicity after exposure to bleomycin (136). CAPE also protected rat renal cells from ischemia-reperfusion injury (61). CAPE has been shown to...
SENSITIZATION BY PLANT POLYPHENOLS

inhibit NF-κB (127), which may account for its chemopreventive effects in intestinal, colon, skin, and liver cancers and reduce inflammation in rats exposed to radiation (106). Furthermore, CAPE suppressed COX-2 expression in human oral epithelial cells and in a rat model of inflammation (115). It may also help to prevent cancer progression by inhibiting angiogenesis, tumor invasion, and metastasis in mice (104) and, when combined with sulindac, by suppressing lung adenocarcinoma motility (171).

Silymarin

Silymarin appears to protect rat cardiomyocytes against anthracycline-induced oxidative stress, perhaps through its effects on cell membrane stabilization (176). These results were consistent with those from another report that suggested silymarin may prevent doxorubicin-mediatd damage to rat heart membrane, possibly through a free-radical scavenging mechanism (148).

Ginger

Ginger may prevent chemotherapy and radiotherapy-induced nausea. In shrews, rats, and dogs, ginger inhibited chemotherapy-induced gastric emptying and showed comparable results to standard antiemetic compounds (167, 168, 207). Furthermore, ginger reduced radiation-related sickness and free-radical production in mice (72).

ENHANCEMENT OF DRUG BIOAVAILABILITY BY POLYPHENOLS

Piperine

Piperine, an ingredient of black pepper, increases the bioavailability of chemotherapeutic drugs. A study using hepatic tissue in rats demonstrated that piperine was a nonspecific inhibitor of drug metabolism and discriminated little between different cytochrome P-450 forms (13), and another study found that it modified the rate of glucuronidation by lowering endogenous UDP-glucuronid acid content and inhibiting transferase activity (174). This observation was consistent with that of another report that suggested piperine was a potent inhibitor of UDP-glucose dehydrogenase in rats and that its effect on glucuronidation was stronger in the intestines than in the liver (154). In a clinical crossover study in which six subjects in each group received a single dose of propranolol or theophylline alone or piperine, piperine enhanced the systemic availability of oral propranolol and theophylline (15). In rat jejunum cells, piperine significantly stimulated γ-glutamyl transpeptidase activity, enhanced the uptake of radiolabeled L-leucine, L-isoleucine, and L-valine, and increased lipid peroxidation, suggesting that piperine may increase intestinal permeability through interaction with the mucosal lipid environment (76). These results were consistent with those from studies that showed that piperine modulates membrane dynamics and permeation characteristics and results in an increase in the small intestine absorptive surface, thereby enabling efficient permeation through the epithelial barrier (82, 83). Piperine was also shown to inhibit both the drug transporter P-glycoprotein and the major drug-metabolizing enzyme CYP3A4, in vitro, indicating that dietary piperine could affect plasma concentrations of P-glycoprotein and CYP3A4 substrates in humans (22). Using rat liver, another study showed that piperine markedly inhibited aflatoxin metabolism in vitro and in vivo, suggesting enhanced aflatoxin bioavailability (6). Piperine was also shown to enhance curcumin bioavailability in both rats and humans (173). These results, when taken together, warrant the further investigation of piperine as a supplement to chemotherapeutic drugs to enhance their bioavailability.

CONCLUSIONS

Cancer is a multifactorial disease that, in many cases, requires multimodal therapy, including chemotherapy and radiotherapy. The mechanisms for modulation of signaling pathways that account for the efficacy of these treatments have become increasingly clear in recent years, leading to the clinical and laboratory study of numerous biologic modifiers that may increase their potency and reduce their adverse effects. Despite extensive use for thousands of years because of their alleged medicinal value, plant polyphenols have only recently received significant attention in the literature for their ability to modulate a number of signaling pathways that lead to the initiation and progression of cancer. The ability of these products to sensitize tumor cells to chemotherapy and radiotherapy often correlates with their ability to inhibit well-studied molecular markers. The data are still limited, but the results appear promising, and the use of plant polyphenols as potential modulators of chemotherapy and radiotherapy deserves further investigation.

ACKNOWLEDGMENTS

We thank Walter Pagel and Linda Ford for careful review of the manuscript. This work was supported by the Clayton Foundation for Research, Department of Defense U.S. Army Breast Cancer Research Program grant BC010610, and National Institutes of Health PO1 grant CA-91844 on lung chemoprevention (all to B.B.A.).

ABBREVIATIONS

CAPE, caffeic acid phenethyl ester; COX-2, cyclooxygenase-2; EGCG, (−)-epigallocatechin gallate; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; 5-FU, 5-fluorouracil; IAP, inhibitor of apoptosis protein; IκBo, inhibitory subunit of nuclear factor-κB; IL-6, interleukin-6; iNOS, inducible nitric oxide synthase; 5-LOX, 5-lipoxygenase; MDR, multidrug resistance; MMP, matrix metalloproteinase; NF-κB, nuclear factor-κB; PI-3K, phosphatidylinositol 3-kinase; ROI, reactive oxygen intermediates; STAT, signal transducer and activator of transcription; TNF, tumor necrosis factor.
REFERENCES

1. Aggarwal BB, Kumar A, and Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anti-

2. Ahmad KA, Clement MV, Hanif IM, and Pervaiz S. Resveratrol inhibits drug-induced apoptosis in human leu-
kenia cells by creating an intracellular milieu nonpermis-

3. Akimoto T, Hunter NR, Buchmiller L, Mason K, Ang KK, and
Mitsubishi N. Genistein, a tyrosine ki-
nase inhibitor, enhanced radiosensitivity in human esophaga-
telial cells in vitro: possible involvement of in-

4. Akimoto T, Nonaka T, Ishikawa H, Sakurai H, Saitoh JI,
Takahashi T, and Mitsubishi N. Genistein, a tyrosine ki-
nase inhibitor, enhanced radiosensitivity in human esophaga-
telial cells in vitro: possible involvement of in-

5. Akira S. Roles of STAT3 defined by tissue-specific gene

6. Allameh A, Saxena M, Biswas G, Raj HG, Singh J, and
Srivastava N. Piperine, a plant alkaloid of the piper
species, enhances the bioavailability of aflatoxin B1 in rat

7. Altenri DC. Validating survivin as a cancer therapeutic tar-

8. Altenri DC, Marchisio PC, and Marchisio C. Survivin apop-
tosis: an interloper between cell death and cell prolif-

9. Annabi B, Lee YT, Martel C, Pilorget A, Bahary JP , and
Martel C. Survivin as a potential target for cancer therapeu-

10. Anuchapreeda S, Leechanachai P, and Ambudkar
SV, and Limtrakul PN. Modulation of P-glycoprotein ex-
pression and function by curcumin in multidrug-resistant

Folsch UR, and Schafer H. Role of NF-kappaB and
Rel/NF-kappaB transcription factors. Oncogene 18: 6910–
6924, 1999.

12. Barkett M and Gilmore TD. Control of apoptosis by
Rel/NF-kappaB transcription factors. Oncogene 18: 6910–
6924, 1999.

13. Bano G, Raina RK, Zutshi U, Bedi KL, Johri RK, and
Sharma SC. Effect of piperine on bioavailability and phar-
macokinetics of propranolol and theophylline in healthy
56. Gigante M, Toffoli G, Bertola A, Biscontin G, Dassie A, Zanelli GD, Zanin E, Trovo MG, and Muzzio PC. Radiosensitization in multidrug-resistant and cisplatin-resistant...

85. Kim DM, Koo SY, Jeon K, Kim MH, Lee J, Hong CY, and Jeong S. Rapid induction of apoptosis by combination of...

143. Philip S, Bulbule A, and Kundu GC. Osteopontin stimulates tumor growth and activation of promatrix metallo-
SENSITIZATION BY PLANT POLYPHENOLS

Address reprint requests to:
Bharat B. Aggarwal
Cytokine Research Section
Department of Bioimmunotherapy
The University of Texas M.D. Anderson Cancer Center
1515 Holcombe Boulevard
Houston, TX 77030
E-mail: aggarwal@mdanderson.org

Received for publication May 17, 2005; accepted June 27, 2005.